skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sweet, Dustin E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Fisher Valley basin (FVB), located adjacent to the Onion Creek salt diapir, Paradox basin, Utah, USA, constitutes one of the thickest collections of Quaternary sediments within the Colorado Plateau. These sediments are important for constraining regional paleoclimate environments as well as recent tectonic movement of the Onion Creek salt diapir. Here, we combine magnetic susceptibility data with previously published age constraints (Bishop Tuff and Lava Creek B ash) into a cyclostratigraphic analysis of these sediments. We present a refined and astronomically tuned age model that demonstrates that deposition of the upper basin fill was between ca. 765 ka and 212 ± 8 ka. Correlating this chronologic model to environmental magnetic proxies, we show that from ca. 765 ka to ca. 535 ka, magnetic mineral assemblages deposited during glacials were characterized by generally finer grain sizes (elevated χARM/χlow) than during interglacials. These data are consistent with glacial periods being characterized by either wetter conditions amenable to pedogenesis, or drier conditions associated with increased concentrations of windblown dust. Interglacials are characterized by generally coarser magnetic grain sizes (lower χARM/χlow), consistent with periods of episodic alluvial and colluvial deposition in the FVB. At ca. 535 ka, χARM/χlow reach their lowest value (coarsest magnetic grain size) and then begin a progressive transition to higher values, consistent with a generally fining upward stratigraphic sequence throughout the rest of the section. This transition at ca. 535 ka coincides with a peak in sediment accumulation rate of ∼19 cm/k.y. and is most plausibly linked to halokinetic activity of the nearby Onion Creek salt diapir. Thus, although sediments in the FVB appear to be sensitive to global climate patterns between 765 ka and ca. 535 ka, local tectonic processes appear to episodically obscure this sensitivity. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  2. Earth has sustained continental glaciation several times in its past. Because continental glaciers ground to low elevations, sedimentary records of ice contact can be preserved from regions that were below base level, or subject to subsidence. In such regions, glaciated pavements, ice-contact deposits such as glacial till with striated clasts, and glaciolacustrine or glaciomarine strata with dropstones reveal clear signs of former glaciation. But assessing upland (mountain) glaciation poses particular challenges because elevated regions typically erode, and thus have extraordinarily poor preservation potential. Here we propose approaches for detecting the former presence of glaciation in the absence or near-absence of ice-contact indicators; we apply this specifically to the problem of detecting upland glaciation, and consider the implications for Earth’s climate system. Where even piedmont regions are eroded, pro- and periglacial phenomena will constitute the primary record of upland glaciation. Striations on large (pebble and larger) clasts survive only a few km of fluvial transport, but microtextures developed on quartz sand survive longer distances of transport, and record high-stress fractures consistent with glaciation. Proglacial fluvial systems can be difficult to distinguish from non-glacial systems, but a preponderance of facies signaling abundant water and sediment, such as hyperconcentrated flood flows, non-cohesive fine-grained debris flows, and/or large-scale and coarse-grained cross-stratification are consistent with proglacial conditions, especially in combination with evidence for cold temperatures, such as rip-up clasts composed of noncohesive sediment, indicating frozen conditions, and/or evidence for a predominance of physical over chemical weathering. Other indicators of freezing (periglacial) conditions include frozen-ground phenomena such as fossil ice wedges and ice crystals. Voluminous loess deposits and eolian-marine silt/mudstone characterized by silt modes, a significant proportion of primary silicate minerals, and a provenance from non-silt precursors can indicate the operation of glacial grinding, even though such deposits may be far removed from the site(s) of glaciation. Ultimately, in the absence of unambiguous ice-contact indicators, inferences of glaciation must be grounded on an array of observations that together record abundant meltwater, temperatures capable of sustaining glaciation, and glacial weathering (e.g., glacial grinding). If such arguments are viable, they can bolster the accuracy of past climate models, and guide climate modelers in assessing the types of forcings that could enable glaciation at elevation, as well as the extent to which (extensive) upland glaciation might have influenced global climate. 
    more » « less